MEA 712: (An Introduction to) Mesoscale Atmospheric Modeling
Second mini computing assignment

Due at the start of the next class (Thursday 30 August)

The next mini assignment is to set up a gridded field in your existing FORTRAN code.

1. Set \(\text{NX} \) to 21.

2. Use a \texttt{PARAMETER} statement to set \(\text{DX} \) to 100.0 meters.

3. Assign the values to \(\text{PSI}(I) \) using a \texttt{DO} loop.
 a) the \texttt{DO} loop should run from \(I=1 \) to \(I=\text{NX} \).
 b) we will describe \(\text{PSI} \) via the function
 \[
 \psi(x) = \sin \left(\frac{2\pi x}{1000.0 \text{ m}} \right)
 \]
 Let’s assume that \(I=1 \) has an \(x \) value of 0 meters. Because all of our grid points are evenly spaced at an interval of \(\text{DX} \), hopefully it is therefore clear that \(x = \text{REAL}(I-1) \times \text{DX} \). You can use this form when you code up the equation to assign the values for \(\text{PSI} \), or you can alternatively declare \(x \) as another variable in your code, and define it in the \texttt{DO} loop. Note that we use the \texttt{REAL} card because some FORTRAN compilers treat the product of an integer \(\times \) a real as an integer (not what we want here).

4. Instead of printing “hello world”, have your code print out each value of \(x \) and \(\text{PSI} \) after it has been defined.

5. Print out your code and your printed values and bring them to class to receive credit.